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ABSTRACT

The two conditions 12 and 22 are so that any digital topology on Z2

satisfies them is topologically connected whenever it is graphically con-
nected. In this paper, we show that the two digital topologies on Z2

satisfy 12 and 22 are precisely the Hopf and the Marcus-Wyse Topolo-
gies. We prove that the Hopf topology is the product of two Khalimsky
topologies on Z. We also prove that the Hopf topology is homeomorphic
to the cellular-complex topology on F2 while the Marcus-Wyes topology
is homeomorphic to F2

{0,2}.

Keywords: Digital spaces, Alexandroff spaces, Hopf topology, Marcus-
Wyes topology, cellular-complex topology.
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1. Introduction and Preliminaries

For a topological space (X, τ), a subset A is called a semi-open in Levine
(1963) (resp. a preopen (Mashhour et al. (1982)), an α-open (Njastad (1965)))

if A ⊆ A◦ (resp. A ⊆ A
◦

, A ⊆ A◦
◦

). It is called a semi-closed set Crossley and
Hildebrand (1971) (resp. a preclosed set in El-Deep et al. (1983)), an α-closed
in Dontchev (1998a)) if Ac is semi-open (resp. preopen, α-open).

We denote SO(X) (resp. τα, PO(X)) to be the family of all semi-open (resp.
α-open, preopen) sets in X.

A topological space X is called a semi-To in Maheshwari and Prasad (1975)
(resp. an α-To in Maki et al. (1993), a pre-To)-space if whenever x and y are
distinct points in X, there is a semi-open (resp. an α-open, a pre-open) set
which contains one of x, y and not the other.

X is T 1
4

in Arenas et al. (1997) (resp. T 1
3

in Arenas et al. (2000))-space if
for every finite (resp. compact) subset F of X and every y /∈ F , there exists
a set Ay containing F and disjoint from {y} such that Ay is either open or
closed. X is T 1

2

in Dunham (1977) (resp. T 3
4

in Dontchev (1998b), semi-T 1
2

in Cueva and Saraf (2000), α-T 1
2

, a feebly T1 (Jankovic and Reilly (1985)), a
semi-T

D
in Jankovic and Reilly (1985)) if every singleton is either open (resp.

regular open, semi-open, α-open, nowhere dense, open) or closed (resp. closed,
semi-closed, α-closed, clopen, nowhere dense). X is semi-T1 in Maheshwari and
Prasad (1975) (resp. α-T1 in Maki et al. (1993)) if every singleton is semi-closed
(resp. α-closed) set. X is T

∗

1 -space Ganster et al. (1992) if every nowhere
dense subset of X is union of closed sets. X is a submaximal space (Reilly
and Vamanamurthy (1990)) if every dense subset is open, or equivalently every
preopen subset is open. A nodec space in Van Mill and Mills (1980) is a space
where all nowhere dense sets are closed. A locally finite space X is a space such
that for any element x ∈ X there exists a finite open set Ux such that x ∈ Ux.

For a given poset (X,≤), we defineM to be the set of all maximal elements
and the set m to be the set of minimal elements in X.

For x ∈ X we define the down set ↓ x := {y ∈ X : y ≤ x} and the up set
↑ x := {y ∈ X : y ≥ x}. For a point x ∈ X, we define x̂ = ↑ x ∩M . A poset
X satisfies the ascending chain conditions, (ACC) if any increasing sequence is
finally constant. A poset X satisfies the descending chain conditions, (DCC) if
any decreasing sequence is finally constant. If X satisfies ACC (resp. DCC),
then the setM ( resp. m) is nonempty set. There is a very useful way to depict
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posets using the so called Hasse diagrams.

For posets (Pi,≤i), i = 1, 2, · · · , n, we can formulate many types of partial
orders the cartesian product

∏n

i
Pi = P1×P2 · · ·×Pn. The most famous order

is the coordinatewise order ≤c. For two elements a = (a
1
, a

2
, · · · , a

n
) and b =

(b
1
, b

2
, · · · , b

n
) in

∏n

i
Pi, we have that a ≤c b iff ai

≤
i
b
i
∀ i = 1, 2, · · · , n.

A topological space X is called an Alexandroff space (In short, A-space) if
the intersection of any collection of open sets is open. Equivalently, any element
x in X has a minimal neighborhood base V (x) which is the intersection of all
open sets containing x. If X is an A-space and x, y ∈ X, then x ∈ {y} if and
only if y ∈ V (x).

If an A-space (X, τ) is T0, then we define a (Alexandroff) specialization
order as a ≤τ b if a ∈ {b}, (equivalently b ∈ V (a)). If (X,≤) is a poset, then
the collection B = {↑ x : x ∈ X} is a base for a To A-topology on X denoted
by τ≤.

From now on, we denote (X, τ(≤)) to be a To A-space (X, τ) where (X,≤)
is its corresponding poset. If (X, τ(≤)) is a To A-space, then ∀x ∈ X, V (x)
equals ↑ x. If (X, τ) is an A−space with the collection F of closed sets, then
F is itself an Alexandroff topology on X called the dual of τ on X and usually
denoted by τd. If (X, τ(≤)) is a T

0
A−space, then the Alexandroff dual is also

T
0
-space, and the induced order ≤

d
is the reverse order of the order ≤; that is

x ≤
d
y iff y ≤ x.

Thus, for x ∈ X, we have V (x) = cl
d
(x) and V

d
(x) = cl(x). Two distinct

points x and y in X are called adjacent if the subspace {x, y} is (topologically)
connected.

Definition 1.1. (Mahdi and EL-Mabhouh (2011)). A T0 A−space (X, τ(≤))
is called Artinian (resp. Noetherian) Mahdi and Elatrash (2005) if the corre-
sponding poset satisfies the ACC (resp. DCC). If a T0 A−space is both Artinian
and Noetherian, then it is called a generalized locally finite (g-locally finite).

Theorem 1.2. (Mahdi (2015)). Let X and Y be two T0 A−spaces. Then X
and Y are homeomorphic iff there exists a bijective function f : X −→ Y such
that f(VX(x)) = VY (f(x)), ∀x ∈ X.

Theorem 1.3. (Mahdi and Elatrash (2006)). Let X be a T0 A−space. Then
all the following are equivalent:
(i) X is T 1

2

-space.
(ii) X is T 1

3

-space.
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(iii) X is T 1
4

-space.
(iv) Each element of X is either open or closed. Equivalently, the elements in
the corresponding poset is either minimal or maximal.
(v) X is submaximal.
(vi) PO(X)= τα = τ(≤); that is, every preopen set is open.
(vii) X is T

∗

1 -space.

Theorem 1.4. (Mahdi and Elatrash (2006)). Let X be a T0 A−space. Then
X is T 3

4

iff the following two conditions are satisfied:
(a) X is T 1

2

-space.
(b) ∀x /∈M , | x̂ |≥ 2; where | x̂ | is the cardinality of the set x̂.

Theorem 1.5. (Mahdi and Elatrash (2006)). Let X be an Artinian T0 A−space.
Then X is both α-T 1

2

−space and semi-T 1
2

−space.

Theorem 1.6. (Mahdi and Elatrash (2006)). If X is an Artinian T0 A−space,
then the following statements are equivalent:
(1) X is a semi-T2−space.
(2) X is a semi-T

1
−space.

(3) ∀x /∈M , | x̂ |≥ 2.

Theorem 1.7. (Mahdi (2010)). If (X, τ
x
(≤x)) and (Y, τ

y
(≤y)) are two T

0

A−spaces with corresponding posets (X,≤x), (Y,≤y) respectively, then X × Y
is a T

0
A−space induces a specialization order ≤

p
coincides with the coordi-

natewise order of the product of the corresponding posets.

2. Properties of Digital Spaces on Z2

The digital space Z2 is the set of all tuples (x1, x2) of the Euclidean space
having integer coordinates. Let a = (a

1
, a

2
), b = (b

1
, b

2
) ∈ Z2. The length

of the i’th coordinate between a and b is ri(a, b) = |ai − bi |, and the total
coordinates length between a and b is R(a, b) = |a1− b1|+ |a2− b2|. For a given
point x ∈ Z2, the 8-neighborhood N8(x) of x is the set of all points y ∈ Z2

such that x 6= y and r
i
(x, y) ≤ 1 for i = 1, 2. The elements in N8(x) are

called 8−neighbors (or 8−adjacent) of x. The 4-neighborhood N4(x) of x is
the set of all points y ∈ Zd such that R(x, y) = 1. The elements in N4(x) are
called 4−neighbors (or 4−adjacent) of x. An n-path (n = 4, 8) from x to y
is a list of elements x = x1, x2, · · · , xk = y satisfy that for 1 < i ≤ k, xi is
n-adjacent of xi−1. Let X ⊆ Z2. For n = 4, 8 if for each points x, y ∈ X,
there is n-path contained in X from x to y, X is called n-connected. Eckhardt
and Latecki (2003) suggest the following two conditions so that any topology
on Z2 satisfies these conditions will be topologically connected whenever it is
graphicly connected:
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(1
2

) If a set in Z2 is 4-connected, then it is topologically connected.

(2
2

) If a set in Z2 is not 8−connected, then it is not topologically connected.

Henceforth, we will consider the digital topology on Z2 to mean any topol-
ogy satisfying 1

2

and 2
2

. In Mahdi and Hegazy (2016) we proved that there
are only two digital topologies τs and τm on Z2,which are g-locally finite T0

A−spaces. With respect to any digital topology on Z2, if x, y ∈ Z2, define
x→ y ( or y ← x ) if for each open set U containinig x, we have y ∈ U .

The notation x → y denotes the negation of x → y Eckhardt and Latecki
(2003). the relation ”→ ” is a partial order on Z2. With respect to this order,
a point x ∈ Z2 is called a saddle point (Eckhardt and Latecki (2003)) if it is
neither maximal nor minimal points. The set of all saddle points is denoted
by SD. We prove that (Z2, τs) contains saddle points, while (Z2, τm) has no
saddle point.

Definition 2.1. (Mahdi and Hegazy (2016)). Define two subsets EV2, OD2

of Z2 as follows :

(i) EV2 = {(a, b) : a + b is even number }.

(ii) OD2 = {(a, b) : a + b is odd number }.

Theorem 2.2. (Mahdi and Hegazy (2016)). If x is a maximal (resp. a min-
imal, a saddle) point in Z2, then no point in N4(x) is a maximal (resp. a
minimal, a saddle) point.

Lemma 2.3. (Mahdi and Hegazy (2016)). In the digital space (Z2, τm) if x
is a maximal (resp. a minimal) point, then all points in N8(x) \ N4(x) are
maximal (resp. minimal) points.

Theorem 2.4. (Mahdi and Hegazy (2016)). In the digital space (Z2, τm), if
x ∈ X is a minimal point, then the minimal open set V (x) = N4(x) ∪ {x}.

Theorem 2.5. (Mahdi and Hegazy (2016)). Let τs be the digital topology on
Z2 with saddle points and x ∈ Z2. Then:

(1) if x is a maximal point or a minimal point, then N4(x) is a set of saddle
points.

(2) if x is a saddle point, then ∀y ∈ N4(x), y is either maximal or minimal
point.
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(3) if x is a maximal ( resp. a minimal ) point, then ∀ y ∈ N8(x) \N4(x), y
is a minimal ( resp. a maximal ) point.

(4) if x is a saddle point, then ∀ y ∈ N8(x) \N4(x), y is a saddle point.

Theorem 2.6. (Mahdi and Hegazy (2016)). In the digital space (Z2, τs) with
saddle points, if x ∈ X is a minimal point, then the minimal open set V (x) =
N8(x) ∪ {x}. if y ∈ X is a saddle point, then the minimal open set V (y) =
(M ∩N4(y)) ∪{y}.

3. Marcus-Wyse Topology on Z2

The Marcus-Wyse topology is a special connected T 1
2

A−space on Z2. This
topology was described by Marcus andWyse (1970). They defined this topology
by its minimal neighbourhood as follows: for any point x = (a, b) ∈ Z2, V (x)
= {x} ∪N4(x) if a+b is even and V (x) = {x} otherwise.

Hence the digital topology τm on Z2 is exactly the Marcus-Wyse topology.
This topology is a T0 A−space, and its specialization order is denoted by (≤m).
If u ∈ EV2, then N4

(u) ⊆ OD2 and N
8
(u) \ N

4
(u) ⊆ EV2. If u ∈ OD2, then

N
4
(u) ⊆ EV2 and N

8
(u) \N

4
(u) ⊆ OD2. Moreover if u, v ∈ EV2 (resp. OD2),

then there exists a finite sequence u = u
0
, u

1
, u

2
,· · · , u

n
= v in EV2 (resp.

OD2) such that ui−1 ∈ N8(ui) \N4(ui) ∀ i = 1, 2,· · · , n.

Theorem 3.1. Let (Z2, τm) be the Marcus-Wyse space. If there exists a min-
imal (resp. a maximal ) point u such that u ∈ EV2, then EV2 = m and OD2

= M (resp. EV2 = M and OD2 = m ).

Proof. Let u ∈ EV2 ∩m and v ∈ EV2. Then there exists a finite sequence u
= u0, u1, · · · , un = v in EV2 such that ui−1 ∈ N8(ui) \N4(ui), i = 1, 2, · · · , n.
Hence v is a minimal point. Conversely, if w = (a, b) ∈ OD2, then (a+ 1, b) ∈
EV2 and so (a+1, b) is minimal point. By Theorem 2.2, w is maximal point.

Hence, in the Marcus-Wyse topology on Z2, we have two possible cases: "m
= EV2 and M = OD2" or "M = OD2 and m = EV2". It is clearly that they
are homeomorphic. By convention, we will take the topology in the first case
to be the Marcus -Wyse topology (Z2, τm) and the topology τdm in the second
case will be its homeomorphic dual. The up of a point x ∈ Z2 in τm is denoted
by ↑

m
x and in τdm by ↑d

m
x.
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Using a net diagram in (a) or a Hasse diagram in (b) a part of the Marcus-
Wyse topology on Z2 is shown in Figure 1:

Figure 1: Part of Marcus-Wyse Topology on Z2

The specialization order of the Marcus-Wyse topology on Z2 denote by ≤m .
Using Lemma 2.4, if x ∈ EV2 = m, then ↑

m
x = N4(x) ∪ {x} and if x ∈ OD2

= M , then ↑
m
x = {x}. Then we have the following theorem.

Theorem 3.2. If x and y are two distinct points in Z2, then x ≤
m
y iff

x ∈ EV2 and y ∈ N4(x).

Theorem 3.3. Let (Z2, τm) be the Marcus-Wyse topology on Z2, then

(1) Z2 is submaximal.

(2) Z2 is nodec.

(3) PO(Z2)=τα = τ(≤); that is, every preopen set is open.

(4) Z2 is T
∗

1 -space.

(5) Z2 is T 3
4

.

(6) Z2 is semi-T2−space.

Proof. Any element of Z is either maximal or minimal, so by Theorem 1.3, we
get the parts (1),(2),(3) and (4). Since Z is submaximal, then by Theorem
1.3, it is T 1

2

-space. Moreover, since | x̂ | = 2 ∀x /∈ M , by Theorem 1.4, Z is
T 3

4

-space. Part(6) is coming directly from Theorem 1.6.
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4. Alexandroff Hopf Topology on Z2

In Eckhardt and Latecki (2003) said that the digital topology τs on Z2

which has saddle points (τs) is homeomorphic to the cellular-complex topology
(Alexandroff Hopf topology). We will latter define a useful function and using
it to prove this fact.

Let O and V be the odd and the even numbers in Z respectively. We define
the subsets of Z2 EE, OO, EO and OE as : EE = E ×E, OO = O×O, EO
= E ×O and OE = O × E. Hence OD2 = EO ∪OE and EV2 = EE ∪OO.

Let ≤
s
be the induced order on Z2 by the Hopf topology τs. The up of a

point x ∈ Z2 in τs is denoted by ↑
s
.

Lemma 4.1. Let (Z2, τs) be the Hopf space and let x, y ∈ Z2.

(1) If x is a maximal (resp. a minimal ) point and if r1(x, y) = 2k1 and
r2(x, y) = 2k2 for some integers k1, k2, then y is a maximal ( resp. a
minimal ) point.

(2) If x is a saddle point and R(x, y) = 2, then y is a saddle point.

Theorem 4.2. Let (Z2, τs) be the Hopf space, and u = (x, y) ∈ EE.

(i) If u is a minimal point, then m = EE, M = OO, and SD = OD2.

(ii) If u is a maximal point, then m = OO, M = EE, and SD = OD2.

(iii) If u is a saddle point, then SD = EV2, and either "M = OE and m =
EO" or "M = EO and m = OE".

Proof. (i) Let (a, b) ∈ EE. Then a = x+2s and b = y+2r for some integers s,
r. Using the induction and Lemma 4.1, we have (a, b) ∈ m. Hence EE ⊆ m. If
(a, b) ∈ OO, then (a+1, b+1) ∈ EE ⊆ m and (a+1, b+1) ∈ N8(a, b)\N4(a, b).
Hence (a, b) ∈ M and so OO ⊆ M . If (a, b) ∈ OD2, then (a + 1, b) ∈ EV2 ⊆
m ∪M . So (a, b) ∈ SD and hence OD2 ⊆ SD. Thus m = EE, M = OO, and
SD = EO ∪OE = OD2.

(ii) Similar to (i).

(iii) Let (a, b) ∈ EE. Similarly to (i), EE ⊆ SD. Assume that (a, b) ∈ OO.
Hence a = x + 2s + 1 and b = y + 2r + 1 for some integers s, r. By Lemma
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4.1, (x+ 2n, y + 2r) ∈ SD and so (a, b) ∈ SD. Therefore, OO ⊆ SD and thus
EV2 ⊆ SD. Let (a, b) ∈ OE. Then (a + 1, b) ∈ EV2 ⊆ SD. By Theorem 2.5,
either (a, b) ∈ M or (a, b) ∈ m. Hence OE ⊆ M ∪m. Assume that OE ⊆ M
(resp. OE ⊆ m). Let (a, b) ∈ EO. Then (a + 1, b) ∈ SD and (a, b) /∈ SD.
Suppose to contrary that (a, b) ∈ M (resp. (a, b) ∈ m). So N

4
(a + 1, b) ⊆ M

(resp. N
4
(a+ 1, b) ⊆ m) which is a contradiction since (a+ 1, b) ∈ SD.

Corollary 4.3. Let (Z2, τs) be the Hopf space.

(a) If m = EE, then M = OO and SD = EO ∪OE.

(b) If m = EO, then M = OE and SD = EE ∪OO.

(c) If m = OE, then M = EO and SD = EE ∪OO.

(d) If m = OO, then M = EE and SD = EO ∪OE.

Proof. (a) Direct from Theorem 4.2.
(b) Let (x, y) ∈ EO, then (x, y + 1) ∈ SD ∩ EE. Hence M = OE, SD =
EE ∪OO. Parts (c) and (d) are similar to (b).

It is clearly that if Z2 has the topology τs and (x, y) ∈ Z2, such that (x, y)
is a maximal or a minimal point, then we can determine the type (maximal,
minimal, or saddle) of any point in Z2. Moreover, if (x, y) is a saddle point in
Z2, then we have at most two cases for any point in Z2. In fact there exist four
topologies in Z2. All of them can be considered as a τs topology, and all of
them are homeomorphic to each others. They are considered as one topology
on Z2. By convention, we will consider the Hopf topology to be such that m =
EE, M = OO and SD = EO ∪OE. The other three types of homeomorphic
topologies on Z2 are also called Hopf topology on Z2, but if we take any one of
the three other types as the Hopf topology on Z2, we must say so.

Theorem 4.4. Let Z2 be the Hopf topology and (a, b) ∈ Z2.

(a) If (a, b) ∈ OO, then ↑ (a, b) = {(a, b)} = {a} × {b}.

(b) If (a, b) ∈ EE, then ↑ (a, b) = N8(a, b)∪{(a, b)} = {a−1, a, a+1}×{b−
1, b, b+ 1}.

(c) If (a, b) ∈ EO, then ↑ (a, b) = {(a−1, b), (a, b), (a+1, b)} = {a−1, a, a+
1} × {b}.
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(d) If (a, b) ∈ OE, then ↑ (a, b) = {(a, b− 1), (a, b), (a, b+ 1)} = {a} × {b−
1, b, b+ 1}.

Definition 4.5. (Melin (2003)). The Khalimsky topology on the set of integer
numbers Z is a To A−space where the smallest neighborhoods V (i) = {i} if i
is odd and V (i) = {i− 1, i, i+ 1} if i is even.

Definition 4.6. Let (Z, τ
kh
) be the Khalimsky space. The product of two Khal-

imsky spaces on Z2 denoted by τp which is T0 A-space with minimal neighbour-
hood ↑

kh
(a, b) = ↑

kh
a × ↑

kh
b for all (a, b) ∈ Z2.

Theorem 4.7. Let (Z, τ
kh
) be the Khalimsky space and (Z2, τ

s
) be the Hopf

space. Then Z2 = Z × Z. That is τ
s
= τ

p
.

Proof. Firstly the two topologies τs and τp are T0 A-spaces on Z2. By Theorem
4.4, ↑

p
(a, b)=↑

kh
a × ↑

kh
b = ↑

s
(a, b) for all (a, b) ∈ Z2. Hence by Theorem

1.7 and Theorem 1.2, τ
s
= τ

p
.

Remark 4.8. The other three homeomorphic types of the Hopf topologies are
the product of (Z, τ

kh
)× (Z, τ d

kh
), (Z, τ d

kh
)× (Z, τ

kh
) and (Z, τ d

kh
)× (Z, τ d

kh
). For

example, in the Hopf topology (Z, τ d

kh
)× (Z, τ

kh
), m = OE.

Using a net diagram in (a) or a Hasse diagram in (b), a part of Hopf topology
on Z2 looks like as in Figure 2.

Figure 2: Part of the Hopf topology on Z2

Remark 4.9. Let (Z2, τ
s
) be the Hopf topology. We describe ≤

s
as follows :

if (x, y) ∈ OO, then (x, y) ≤s (a, b) iff x = a and y = b. If (x, y) ∈ EE, then
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(x, y) ≤
s
(a, b) iff a ∈ {x− 1, x, x+1} and b ∈ {y− 1, y, y+1}. If (x, y) ∈ EO,

then (x, y) ≤s (a, b) iff a ∈ {x− 1, x, x+ 1} and b = y. Finaly if (x, y) ∈ OE,
then (x, y) ≤s (a, b) iff a = x and b ∈ {y − 1, y, y + 1}.

Theorem 4.10. If A ∈ {OO,EE} and B = Z2 \A, then the relative topology
on B with respect to the Hopf topology is equal to the relative topology on B
with respect to the Marcus-Wyse topology. That is, (B,≤

s
|
B
) = (B,≤

m
|
B
).

Proof. Let A = OO and suppose that U is a nonempty open set in (B, τm). Let
x ∈ U . If x ∈ EE, then (↑

s
x)∩B = N4(x) = (↑

m
x)∩B ⊆ U . If x ∈ EO∪OE,

then (↑
s
x) ∩ B = {x} = (↑

m
x) ∩ B ⊆ U . Thus, U is open in (B, τ

s
) and

τ
m
|
B
⊆ τ

s
|
B
. Similarly we prove τ

s
|
B
⊆ τ

m
|
B
. Hence τ

m
|
B
= τ

s
|
B
.

Let A = EE. It suffices to note that the relative topology on B with respect
to the τ

d

s
is equal to dual relative topology on B with respect to τs .

Theorem 4.11. Let Z2 be the Hopf space, then:

(1) Z2 is a semi-T2-space.

(2) Z2 is not submaximal space and hence it is not a T 1
4
-space.

Proof. (1) For any x = (a, b) ∈ Z2 \OO, we have |x̂| ≥ 2. Then by Theorem
1.6, Z2 is a semi-T2-space.

(2) Direct from Theorem 1.3.

5. Applications of Digital Topologies on Z2

Let F1

0
= {{a} : a ∈ Z} and F1

1
= {{a, a + 1} : a ∈ Z}. Let f ⊆ Z2. For

n = 0, 1, 2, if f is a cartesian product of n elements of F1

1
and 2 − n elements

of F1

0
, we say that f is a an n-face or simply a face of Z2, n is the dimension

of f , and we write dim(f) = n. The space of cubical complexes F2

is the set
composed of all faces of Z2

. We denote by F2

k
(0 ≤ k ≤ 2) the set composed of

all k-faces of Z2

. Clearly that F2

k
⊆ F2

. The couple (F2

,⊆) is a poset.
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Thus there is a corresponding T
o
-Alexandroff space (F2

, τ⊆). Indeed this
topology is called the cellular-complex topology for the digital plane introduced
by Alexandroff and Hopf (1935). Let F ⊆ F2

be a set of faces, and let f ∈ F
be a face. Then the face f is a facet of F if f is a maximal in F . Actually, if
x = (x

1
, x

2
) ∈ Z2

, the set ẋ =
∏2

i=1
{x

i
, x

i
+ 1} is a facet of F2

and x is called
the leader of ẋ and we write L(ẋ) = x in Mazo (2012). Let F2

{0,2}
= F2

0
∪ F2

2
.

Definition 5.1. The Marcus-Wyse function κ : F2

{0,2}
−→ Z2

is a bijection
function define as :

κ(f) =

 (a+b,a-b), if dim(f) = 0 and f = {(a, b)};

(a+b+1,a-b), if dim(f) = 2 and L(f) = (a, b).

Definition 5.2. The 2-Alexandroff Hopf function ψ2 : F2 −→ Z2 is a bijection
function define as:

ψ2(f) =


(2a,2b), if dim(f) = 0 and f = {(a, b)};
(2a+1,2b), if dim(f) = 1 and f = {a, a+ 1} × {b};
(2a,2b+1), if dim(f) = 1 and f = {a} × {b, b+ 1};
(2a+1,2b+1), if dim(f) = 2 and f = {a, a+ 1} × {b, b+ 1}.

Using the 2-Alexandroff Hopf function and Theorem 1.2, we have the two fol-
lowing theorems :

Theorem 5.3. The Hopf topology (Z2, τ
s
) is homeomorphic to the cellular-

complex topology (F2, τ⊆).

Theorem 5.4. Let (Z2, τm) be the Marcus-Wyse topology on Z2, then (Z2, τm)

is homeomorphic to (F2

{0,2}
, τ⊆).

6. Conclusion

In this paper we proved there are two topologies on Z2 that are satisfying the
two conditions 12, 22 which are the Hopf and the Marcus-Wyse Topologies. We
studied their properties. We hope this study will be a facilitating component of
the study of Digital Topology and its applications through our findings about
the minimal neighbourhoods of this topologies and represent them graphically.
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