Malaysian Journal of Mathematical Sciences 11(2): 261-274 (2017)

Hopf and Marcus-Wyse Topologies on \mathbb{Z}^2

Hegazy, K. and Mahdi, H. *

Department of Mathematics, Islamic University of Gaza, Palestine

E-mail: hmahdi@iugaza.edu.ps * Corresponding author

> Received: 1st November 2016 Accepted: 12th April 2017

ABSTRACT

The two conditions 1^2 and 2^2 are so that any digital topology on \mathbb{Z}^2 satisfies them is topologically connected whenever it is graphically connected. In this paper, we show that the two digital topologies on \mathbb{Z}^2 satisfy 1^2 and 2^2 are precisely the Hopf and the Marcus-Wyse Topologies. We prove that the Hopf topology is the product of two Khalimsky topologies on \mathbb{Z} . We also prove that the Hopf topology is homeomorphic to the cellular-complex topology on \mathbb{F}^2 while the Marcus-Wyse topology is homeomorphic to $\mathbb{F}^2_{\{0,2\}}$.

Keywords: Digital spaces, Alexandroff spaces, Hopf topology, Marcus-Wyes topology, cellular-complex topology.

1. Introduction and Preliminaries

For a topological space (X, τ) , a subset A is called a *semi-open* in Levine (1963) (resp. a *preopen* (Mashhour et al. (1982)), an α -open (Njastad (1965))) if $A \subseteq \overline{A^{\circ}}$ (resp. $A \subseteq \overline{A^{\circ}}$, $A \subseteq \overline{A^{\circ}}$). It is called a *semi-closed* set Crossley and Hildebrand (1971) (resp. a *preclosed* set in El-Deep et al. (1983)), an α -closed in Dontchev (1998a)) if A^c is semi-open (resp. preopen, α -open).

We denote SO(X) (resp. τ_{α} , PO(X)) to be the family of all semi-open (resp. α -open, preopen) sets in X.

A topological space X is called a *semi-T_o* in Maheshwari and Prasad (1975) (resp. an α -T_o in Maki et al. (1993), a *pre-T_o*)-space if whenever x and y are distinct points in X, there is a semi-open (resp. an α -open, a pre-open) set which contains one of x, y and not the other.

X is $T_{\frac{1}{4}}$ in Arenas et al. (1997) (resp. $T_{\frac{1}{3}}$ in Arenas et al. (2000))-space if for every finite (resp. compact) subset F of X and every $y \notin F$, there exists a set A_y containing F and disjoint from $\{y\}$ such that A_y is either open or closed. X is $T_{\frac{1}{2}}$ in Dunham (1977) (resp. $T_{\frac{3}{4}}$ in Dontchev (1998b), semi- $T_{\frac{1}{2}}$ in Cueva and Saraf (2000), α - $T_{\frac{1}{2}}$, a feebly T_1 (Jankovic and Reilly (1985)), a semi- T_D in Jankovic and Reilly (1985)) if every singleton is either open (resp. regular open, semi-open, α -open, nowhere dense, open) or closed (resp. closed, semi-closed, α -closed, clopen, nowhere dense). X is semi- T_1 in Maheshwari and Prasad (1975) (resp. α - T_1 in Maki et al. (1993)) if every singleton is semi-closed (resp. α -closed) set. X is T_1^* -space Ganster et al. (1992) if every nowhere dense subset of X is union of closed sets. X is a submaximal space (Reilly and Vamanamurthy (1990)) if every dense subset is open, or equivalently every preopen subset is open. A nodec space in Van Mill and Mills (1980) is a space where all nowhere dense sets are closed. A locally finite space X is a space such that for any element $x \in X$ there exists a finite open set U_x such that $x \in U_x$.

For a given poset (X, \leq) , we define M to be the set of all maximal elements and the set m to be the set of minimal elements in X.

For $x \in X$ we define the down set $\downarrow x := \{y \in X : y \leq x\}$ and the up set $\uparrow x := \{y \in X : y \geq x\}$. For a point $x \in X$, we define $\hat{x} = \uparrow x \cap M$. A poset X satisfies the *ascending chain conditions*, (ACC) if any increasing sequence is finally constant. A poset X satisfies the *descending chain conditions*, (DCC) if any decreasing sequence is finally constant. If X satisfies ACC (resp. DCC), then the set M (resp. m) is nonempty set. There is a very useful way to depict

posets using the so called Hasse diagrams.

For posets (P_i, \leq_i) , $i = 1, 2, \dots, n$, we can formulate many types of partial orders the cartesian product $\prod_i^n P_i = P_1 \times P_2 \cdots \times P_n$. The most famous order is the *coordinatewise order* \leq_c . For two elements $a = (a_1, a_2, \dots, a_n)$ and $b = (b_1, b_2, \dots, b_n)$ in $\prod_i^n P_i$, we have that $a \leq_c b$ iff $a_i \leq_i b_i \forall i = 1, 2, \dots, n$.

A topological space X is called an Alexandroff space (In short, A-space) if the intersection of any collection of open sets is open. Equivalently, any element x in X has a minimal neighborhood base V(x) which is the intersection of all open sets containing x. If X is an A-space and $x, y \in X$, then $x \in \overline{\{y\}}$ if and only if $y \in V(x)$.

If an A-space (X, τ) is T_0 , then we define a (Alexandroff) specialization order as $a \leq_{\tau} b$ if $a \in \overline{\{b\}}$, (equivalently $b \in V(a)$). If (X, \leq) is a poset, then the collection $\mathfrak{B} = \{\uparrow x : x \in X\}$ is a base for a T_o A-topology on X denoted by τ_{\leq} .

From now on, we denote $(X, \tau(\leq))$ to be a T_o A-space (X, τ) where (X, \leq) is its corresponding poset. If $(X, \tau(\leq))$ is a T_o A-space, then $\forall x \in X, V(x)$ equals $\uparrow x$. If (X, τ) is an A-space with the collection \mathcal{F} of closed sets, then \mathcal{F} is itself an Alexandroff topology on X called *the dual* of τ on X and usually denoted by τ^d . If $(X, \tau(\leq))$ is a T_o A-space, then the Alexandroff dual is also T_o -space, and the induced order \leq_d is the reverse order of the order \leq ; that is $x \leq_d y$ iff $y \leq x$.

Thus, for $x \in X$, we have $V(x) = cl_d(x)$ and $V_d(x) = cl(x)$. Two distinct points x and y in X are called *adjacent* if the subspace $\{x, y\}$ is (topologically) connected.

Definition 1.1. (Mahdi and EL-Mabhouh (2011)). A T_0 A-space $(X, \tau(\leq))$ is called Artinian (resp. Noetherian) Mahdi and Elatrash (2005) if the corresponding poset satisfies the ACC (resp. DCC). If a T_0 A-space is both Artinian and Noetherian, then it is called a generalized locally finite (g-locally finite).

Theorem 1.2. (Mahdi (2015)). Let X and Y be two T_0 A-spaces. Then X and Y are homeomorphic iff there exists a bijective function $f: X \longrightarrow Y$ such that $f(V_X(x)) = V_Y(f(x)), \quad \forall x \in X.$

Theorem 1.3. (Mahdi and Elatrash (2006)). Let X be a T_0 A-space. Then all the following are equivalent:

(i) X is $T_{\frac{1}{2}}$ -space. (ii) X is $T_{\frac{1}{3}}$ -space.

(iii) X is $T_{\frac{1}{4}}$ -space.

(iv) Each element of X is either open or closed. Equivalently, the elements in the corresponding poset is either minimal or maximal.

(v) X is submaximal.

(vi) $PO(X) = \tau_{\alpha} = \tau(\leq)$; that is, every preopen set is open. (vii) X is T_1^* -space.

Theorem 1.4. (Mahdi and Elatrash (2006)). Let X be a T_0 A-space. Then X is T_3 iff the following two conditions are satisfied:

(a)
$$X$$
 is T_1 -space.

(b) $\forall x \notin M^{\overline{2}}$, $|\hat{x}| \ge 2$; where $|\hat{x}|$ is the cardinality of the set \hat{x} .

Theorem 1.5. (Mahdi and Elatrash (2006)). Let X be an Artinian T_0 A-space. Then X is both α - $T_{\frac{1}{2}}$ -space and semi- $T_{\frac{1}{2}}$ -space.

Theorem 1.6. (Mahdi and Elatrash (2006)). If X is an Artinian T_0 A-space, then the following statements are equivalent:

(1) X is a semi- T_2 -space.

(2) X is a semi- T_1 -space.

(3) $\forall x \notin M, \mid \hat{x} \mid \geq 2.$

Theorem 1.7. (Mahdi (2010)). If $(X, \tau_x(\leq_x))$ and $(Y, \tau_y(\leq_y))$ are two T_0 A-spaces with corresponding posets (X, \leq_x) , (Y, \leq_y) respectively, then $X \times Y$ is a T_0 A-space induces a specialization order \leq_p coincides with the coordinatewise order of the product of the corresponding posets.

2. Properties of Digital Spaces on \mathbb{Z}^2

The digital space \mathbb{Z}^2 is the set of all tuples (x_1, x_2) of the Euclidean space having integer coordinates. Let $a = (a_1, a_2)$, $b = (b_1, b_2) \in \mathbb{Z}^2$. The length of the *i*'th coordinate between *a* and *b* is $r_i(a, b) = |a_i - b_i|$, and the total coordinates length between *a* and *b* is $R(a, b) = |a_1 - b_1| + |a_2 - b_2|$. For a given point $x \in \mathbb{Z}^2$, the 8-neighborhood $N_8(x)$ of *x* is the set of all points $y \in \mathbb{Z}^2$ such that $x \neq y$ and $r_i(x, y) \leq 1$ for i = 1, 2. The elements in $N_8(x)$ are called 8-neighbors (or 8-adjacent) of *x*. The 4-neighborhood $N_4(x)$ of *x* is the set of all points $y \in \mathbb{Z}^d$ such that R(x, y) = 1. The elements in $N_4(x)$ are called 4-neighbors (or 4-adjacent) of *x*. An *n*-path (n = 4, 8) from *x* to *y* is a list of elements $x = x_1, x_2, \dots, x_k = y$ satisfy that for $1 < i \leq k, x_i$ is *n*-adjacent of x_{i-1} . Let $X \subseteq \mathbb{Z}^2$. For n = 4, 8 if for each points $x, y \in X$, there is *n*-path contained in *X* from *x* to *y*, *X* is called *n*-connected. Eckhardt and Latecki (2003) suggest the following two conditions so that any topology on \mathbb{Z}^2 satisfies these conditions will be topologically connected whenever it is graphicly connected:

Malaysian Journal of Mathematical Sciences

 (1^2) If a set in \mathbb{Z}^2 is 4-connected, then it is topologically connected.

 (2^2) If a set in \mathbb{Z}^2 is not 8-connected, then it is not topologically connected.

Henceforth, we will consider the digital topology on \mathbb{Z}^2 to mean any topology satisfying 1^2 and 2^2 . In Mahdi and Hegazy (2016) we proved that there are only two digital topologies τ_s and τ_m on \mathbb{Z}^2 , which are g-locally finite T_0 A-spaces. With respect to any digital topology on \mathbb{Z}^2 , if $x, y \in \mathbb{Z}^2$, define $x \to y$ (or $y \leftarrow x$) if for each open set U containing x, we have $y \in U$.

The notation $x \to y$ denotes the negation of $x \to y$ Eckhardt and Latecki (2003). the relation " \to " is a partial order on \mathbb{Z}^2 . With respect to this order, a point $x \in \mathbb{Z}^2$ is called a *saddle point* (Eckhardt and Latecki (2003)) if it is neither maximal nor minimal points. The set of all saddle points is denoted by *SD*. We prove that (\mathbb{Z}^2, τ_s) contains saddle points, while (\mathbb{Z}^2, τ_m) has no saddle point.

Definition 2.1. (Mahdi and Hegazy (2016)). Define two subsets EV_2 , OD_2 of \mathbb{Z}^2 as follows :

- (i) $EV_2 = \{(a, b) : a + b \text{ is even number } \}.$
- (ii) $OD_2 = \{(a, b) : a + b \text{ is odd number} \}.$

Theorem 2.2. (Mahdi and Hegazy (2016)). If x is a maximal (resp. a minimal, a saddle) point in \mathbb{Z}^2 , then no point in $N_4(x)$ is a maximal (resp. a minimal, a saddle) point.

Lemma 2.3. (Mahdi and Hegazy (2016)). In the digital space (\mathbb{Z}^2, τ_m) if x is a maximal (resp. a minimal) point, then all points in $N_8(x) \setminus N_4(x)$ are maximal (resp. minimal) points.

Theorem 2.4. (Mahdi and Hegazy (2016)). In the digital space (\mathbb{Z}^2, τ_m) , if $x \in X$ is a minimal point, then the minimal open set $V(x) = N_4(x) \cup \{x\}$.

Theorem 2.5. (Mahdi and Hegazy (2016)). Let τ_s be the digital topology on \mathbb{Z}^2 with saddle points and $x \in \mathbb{Z}^2$. Then:

- (1) if x is a maximal point or a minimal point, then $N_4(x)$ is a set of saddle points.
- (2) if x is a saddle point, then $\forall y \in N_4(x)$, y is either maximal or minimal point.

Malaysian Journal of Mathematical Sciences

- (3) if x is a maximal (resp. a minimal) point, then $\forall y \in N_8(x) \setminus N_4(x)$, y is a minimal (resp. a maximal) point.
- (4) if x is a saddle point, then $\forall y \in N_8(x) \setminus N_4(x)$, y is a saddle point.

Theorem 2.6. (Mahdi and Hegazy (2016)). In the digital space (\mathbb{Z}^2, τ_s) with saddle points, if $x \in X$ is a minimal point, then the minimal open set $V(x) = N_8(x) \cup \{x\}$. if $y \in X$ is a saddle point, then the minimal open set $V(y) = (M \cap N_4(y)) \cup \{y\}$.

3. Marcus-Wyse Topology on \mathbb{Z}^2

The Marcus-Wyse topology is a special connected $T_{\frac{1}{2}}$ A-space on \mathbb{Z}^2 . This topology was described by Marcus and Wyse (1970). They defined this topology by its minimal neighbourhood as follows: for any point $x = (a, b) \in \mathbb{Z}^2$, $V(x) = \{x\} \cup N_4(x)$ if a+b is even and $V(x) = \{x\}$ otherwise.

Hence the digital topology τ_m on \mathbb{Z}^2 is exactly the Marcus-Wyse topology. This topology is a $T_0 A$ -space, and its specialization order is denoted by (\leq_m) . If $u \in EV_2$, then $N_4(u) \subseteq OD_2$ and $N_8(u) \setminus N_4(u) \subseteq EV_2$. If $u \in OD_2$, then $N_4(u) \subseteq EV_2$ and $N_8(u) \setminus N_4(u) \subseteq OD_2$. Moreover if $u, v \in EV_2$ (resp. OD_2), then there exists a finite sequence $u = u_0, u_1, u_2, \cdots, u_n = v$ in EV_2 (resp. OD_2) such that $u_{i-1} \in N_8(u_i) \setminus N_4(u_i) \forall i = 1, 2, \cdots, n$.

Theorem 3.1. Let (\mathbb{Z}^2, τ_m) be the Marcus-Wyse space. If there exists a minimal (resp. a maximal) point u such that $u \in EV_2$, then $EV_2 = m$ and OD_2 = M (resp. $EV_2 = M$ and $OD_2 = m$).

Proof. Let $u \in EV_2 \cap m$ and $v \in EV_2$. Then there exists a finite sequence $u = u_0, u_1, \cdots, u_n = v$ in EV_2 such that $u_{i-1} \in N_8(u_i) \setminus N_4(u_i), i = 1, 2, \cdots, n$. Hence v is a minimal point. Conversely, if $w = (a, b) \in OD_2$, then $(a + 1, b) \in EV_2$ and so (a+1, b) is minimal point. By Theorem 2.2, w is maximal point. \Box

Hence, in the Marcus-Wyse topology on \mathbb{Z}^2 , we have two possible cases: " $m = EV_2$ and $M = OD_2$ " or " $M = OD_2$ and $m = EV_2$ ". It is clearly that they are homeomorphic. By convention, we will take the topology in the first case to be the Marcus -Wyse topology (\mathbb{Z}^2, τ_m) and the topology τ_m^d in the second case will be its homeomorphic dual. The up of a point $x \in \mathbb{Z}^2$ in τ_m is denoted by $\uparrow_m x$ and in τ_m^d by $\uparrow_m^d x$.

Malaysian Journal of Mathematical Sciences

Using a net diagram in (a) or a Hasse diagram in (b) a part of the Marcus-Wyse topology on \mathbb{Z}^2 is shown in Figure 1:

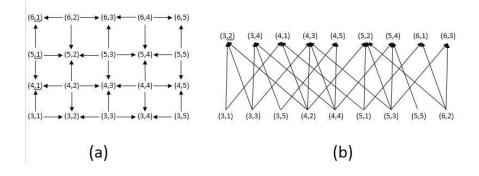


Figure 1: Part of Marcus-Wyse Topology on \mathbb{Z}^2

The specialization order of the Marcus-Wyse topology on \mathbb{Z}^2 denote by \leq_m . Using Lemma 2.4, if $x \in EV_2 = m$, then $\uparrow_m x = N_4(x) \cup \{x\}$ and if $x \in OD_2 = M$, then $\uparrow_m x = \{x\}$. Then we have the following theorem.

Theorem 3.2. If x and y are two distinct points in \mathbb{Z}^2 , then $x \leq_m y$ iff $x \in EV_2$ and $y \in N_4(x)$.

Theorem 3.3. Let (\mathbb{Z}^2, τ_m) be the Marcus-Wyse topology on \mathbb{Z}^2 , then

- (1) \mathbb{Z}^2 is submaximal.
- (2) \mathbb{Z}^2 is nodec.
- (3) $PO(\mathbb{Z}^2) = \tau_{\alpha} = \tau(\leq)$; that is, every preopen set is open.
- (4) \mathbb{Z}^2 is T_1^* -space.
- (5) \mathbb{Z}^2 is $T_{\underline{3}}$.
- (6) \mathbb{Z}^2 is semi- T_2 -space.

Proof. Any element of \mathbb{Z} is either maximal or minimal, so by Theorem 1.3, we get the parts (1),(2),(3) and (4). Since \mathbb{Z} is submaximal, then by Theorem 1.3, it is $T_{\frac{1}{2}}$ -space. Moreover, since $|\hat{x}| = 2 \forall x \notin M$, by Theorem 1.4, \mathbb{Z} is $T_{\frac{3}{4}}$ -space. Part(6) is coming directly from Theorem 1.6.

Malaysian Journal of Mathematical Sciences

4. Alexandroff Hopf Topology on \mathbb{Z}^2

In Eckhardt and Latecki (2003) said that the digital topology τ_s on \mathbb{Z}^2 which has saddle points (τ_s) is homeomorphic to the cellular-complex topology (Alexandroff Hopf topology). We will latter define a useful function and using it to prove this fact.

Let O and V be the odd and the even numbers in \mathbb{Z} respectively. We define the subsets of \mathbb{Z}^2 *EE*, *OO*, *EO* and *OE* as : *EE* = *E* × *E*, *OO* = *O* × *O*, *EO* = *E* × *O* and *OE* = *O* × *E*. Hence $OD_2 = EO \cup OE$ and $EV_2 = EE \cup OO$.

Let \leq_s be the induced order on \mathbb{Z}^2 by the Hopf topology τ_s . The up of a point $x \in \mathbb{Z}^2$ in τ_s is denoted by \uparrow_s .

Lemma 4.1. Let (\mathbb{Z}^2, τ_s) be the Hopf space and let $x, y \in \mathbb{Z}^2$.

- (1) If x is a maximal (resp. a minimal) point and if $r_1(x, y) = 2k_1$ and $r_2(x, y) = 2k_2$ for some integers k_1, k_2 , then y is a maximal (resp. a minimal) point.
- (2) If x is a saddle point and R(x, y) = 2, then y is a saddle point.

Theorem 4.2. Let (\mathbb{Z}^2, τ_s) be the Hopf space, and $u = (x, y) \in EE$.

- (i) If u is a minimal point, then m = EE, M = OO, and $SD = OD_2$.
- (ii) If u is a maximal point, then m = OO, M = EE, and $SD = OD_2$.
- (iii) If u is a saddle point, then $SD = EV_2$, and either "M = OE and m = EO" or "M = EO and m = OE".

Proof. (i) Let $(a, b) \in EE$. Then a = x + 2s and b = y + 2r for some integers s, r. Using the induction and Lemma 4.1, we have $(a, b) \in m$. Hence $EE \subseteq m$. If $(a, b) \in OO$, then $(a+1, b+1) \in EE \subseteq m$ and $(a+1, b+1) \in N_8(a, b) \setminus N_4(a, b)$. Hence $(a, b) \in M$ and so $OO \subseteq M$. If $(a, b) \in OD_2$, then $(a + 1, b) \in EV_2 \subseteq m \cup M$. So $(a, b) \in SD$ and hence $OD_2 \subseteq SD$. Thus m = EE, M = OO, and $SD = EO \cup OE = OD_2$.

(ii) Similar to (i).

(*iii*) Let $(a, b) \in EE$. Similarly to (i), $EE \subseteq SD$. Assume that $(a, b) \in OO$. Hence a = x + 2s + 1 and b = y + 2r + 1 for some integers s, r. By Lemma

Malaysian Journal of Mathematical Sciences

4.1, $(x + 2n, y + 2r) \in SD$ and so $(a, b) \in SD$. Therefore, $OO \subseteq SD$ and thus $EV_2 \subseteq SD$. Let $(a, b) \in OE$. Then $(a + 1, b) \in EV_2 \subseteq SD$. By Theorem 2.5, either $(a, b) \in M$ or $(a, b) \in m$. Hence $OE \subseteq M \cup m$. Assume that $OE \subseteq M$ (resp. $OE \subseteq m$). Let $(a, b) \in EO$. Then $(a + 1, b) \in SD$ and $(a, b) \notin SD$. Suppose to contrary that $(a, b) \in M$ (resp. $(a, b) \in m$). So $N_4(a + 1, b) \subseteq M$ (resp. $N_4(a + 1, b) \subseteq m$) which is a contradiction since $(a + 1, b) \in SD$. \Box

Corollary 4.3. Let (\mathbb{Z}^2, τ_s) be the Hopf space.

- (a) If m = EE, then M = OO and $SD = EO \cup OE$.
- (b) If m = EO, then M = OE and $SD = EE \cup OO$.
- (c) If m = OE, then M = EO and $SD = EE \cup OO$.
- (d) If m = OO, then M = EE and $SD = EO \cup OE$.

Proof. (a) Direct from Theorem 4.2. (b) Let $(x, y) \in EO$, then $(x, y + 1) \in SD \cap EE$. Hence M = OE, $SD = EE \cup OO$. Parts (c) and (d) are similar to (b).

It is clearly that if \mathbb{Z}^2 has the topology τ_s and $(x, y) \in \mathbb{Z}^2$, such that (x, y) is a maximal or a minimal point, then we can determine the type (maximal, minimal, or saddle) of any point in \mathbb{Z}^2 . Moreover, if (x, y) is a saddle point in \mathbb{Z}^2 , then we have at most two cases for any point in \mathbb{Z}^2 . In fact there exist four topologies in \mathbb{Z}^2 . All of them can be considered as a τ_s topology, and all of them are homeomorphic to each others. They are considered as one topology on \mathbb{Z}^2 . By convention, we will consider the Hopf topology to be such that m = EE, M = OO and $SD = EO \cup OE$. The other three types of homeomorphic topologies on \mathbb{Z}^2 are also called Hopf topology on \mathbb{Z}^2 , we must say so.

Theorem 4.4. Let \mathbb{Z}^2 be the Hopf topology and $(a,b) \in \mathbb{Z}^2$.

- (a) If $(a,b) \in OO$, then $\uparrow (a,b) = \{(a,b)\} = \{a\} \times \{b\}$.
- (b) If $(a,b) \in EE$, then $\uparrow (a,b) = N_8(a,b) \cup \{(a,b)\} = \{a-1, a, a+1\} \times \{b-1, b, b+1\}.$
- (c) If $(a,b) \in EO$, then $\uparrow (a,b) = \{(a-1,b), (a,b), (a+1,b)\} = \{a-1, a, a+1\} \times \{b\}.$

Malaysian Journal of Mathematical Sciences

(d) If $(a,b) \in OE$, then $\uparrow (a,b) = \{(a,b-1), (a,b), (a,b+1)\} = \{a\} \times \{b-1, b, b+1\}.$

Definition 4.5. (Melin (2003)). The Khalimsky topology on the set of integer numbers \mathbb{Z} is a T_o A-space where the smallest neighborhoods $V(i) = \{i\}$ if i is odd and $V(i) = \{i - 1, i, i + 1\}$ if i is even.

Definition 4.6. Let (\mathbb{Z}, τ_{kh}) be the Khalimsky space. The product of two Khalimsky spaces on \mathbb{Z}^2 denoted by τ_p which is T_0 A-space with minimal neighbourhood $\uparrow_{kh}(a,b) = \uparrow_{kh} a \times \uparrow_{kh} b$ for all $(a,b) \in \mathbb{Z}^2$.

Theorem 4.7. Let (\mathbb{Z}, τ_{kh}) be the Khalimsky space and (\mathbb{Z}^2, τ_s) be the Hopf space. Then $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$. That is $\tau_s = \tau_p$.

Proof. Firstly the two topologies τ_s and τ_p are T_0 A-spaces on \mathbb{Z}^2 . By Theorem 4.4, $\uparrow_p(a,b)=\uparrow_{kh}a\times\uparrow_{kh}b=\uparrow_s(a,b)$ for all $(a,b)\in\mathbb{Z}^2$. Hence by Theorem 1.7 and Theorem 1.2, $\tau_s=\tau_p$.

Remark 4.8. The other three homeomorphic types of the Hopf topologies are the product of $(\mathbb{Z}, \tau_{kh}) \times (\mathbb{Z}, \tau_{kh}^{d}), (\mathbb{Z}, \tau_{kh}^{d}) \times (\mathbb{Z}, \tau_{kh})$ and $(\mathbb{Z}, \tau_{kh}^{d}) \times (\mathbb{Z}, \tau_{kh}^{d})$. For example, in the Hopf topology $(\mathbb{Z}, \tau_{kh}^{d}) \times (\mathbb{Z}, \tau_{kh}), m = OE$.

Using a net diagram in (a) or a Hasse diagram in (b), a part of Hopf topology on \mathbb{Z}^2 looks like as in Figure 2.

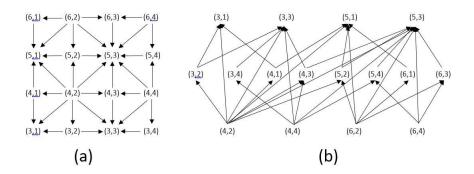


Figure 2: Part of the Hopf topology on \mathbb{Z}^2

Remark 4.9. Let (\mathbb{Z}^2, τ_s) be the Hopf topology. We describe \leq_s as follows : if $(x, y) \in OO$, then $(x, y) \leq_s (a, b)$ iff x = a and y = b. If $(x, y) \in EE$, then

Hopf and Marcus-Wyse Topologies on \mathbb{Z}^2

 $(x,y) \leq_s (a,b) \text{ iff } a \in \{x-1,x,x+1\} \text{ and } b \in \{y-1,y,y+1\}. \text{ If } (x,y) \in EO,$ then $(x,y) \leq_s (a,b)$ iff $a \in \{x-1, x, x+1\}$ and b = y. Finally if $(x,y) \in OE$, then $(x, y) \leq_{s} (a, b)$ iff a = x and $b \in \{y - 1, y, y + 1\}$.

Theorem 4.10. If $A \in \{OO, EE\}$ and $B = \mathbb{Z}^2 \setminus A$, then the relative topology on B with respect to the Hopf topology is equal to the relative topology on Bwith respect to the Marcus-Wyse topology. That is, $(B, \leq_s |_B) = (B, \leq_m |_B)$.

Proof. Let A = OO and suppose that U is a nonempty open set in (B, τ_m) . Let $x \in U$. If $x \in EE$, then $(\uparrow_s x) \cap B = N_4(x) = (\uparrow_m x) \cap B \subseteq U$. If $x \in EO \cup OE$, then $(\uparrow_s x) \cap B = \{x\} = (\uparrow_m x) \cap B \subseteq U$. Thus, U is open in (B, τ_s) and $\tau_m|_B \subseteq \tau_s|_B$. Similarly we prove $\tau_s|_B \subseteq \tau_m|_B$. Hence $\tau_m|_B = \tau_s|_B$. Let A = EE. It suffices to note that the relative topology on B with respect to the $\tau_{_{s}}^{^{d}}$ is equal to dual relative topology on B with respect to $\tau_{_{s}}$.

Theorem 4.11. Let \mathbb{Z}^2 be the Hopf space, then:

- (1) \mathbb{Z}^2 is a semi-T₂-space.
- (2) \mathbb{Z}^2 is not submaximal space and hence it is not a $T_{\frac{1}{4}}$ -space.
- *Proof.* (1) For any $x = (a, b) \in \mathbb{Z}^2 \setminus OO$, we have $|\hat{x}| \ge 2$. Then by Theorem 1.6, \mathbb{Z}^2 is a semi- T_2 -space.
 - (2) Direct from Theorem 1.3.

Applications of Digital Topologies on \mathbb{Z}^2 5.

Let $\mathbb{F}_{0}^{1} = \{\{a\} : a \in \mathbb{Z}\}$ and $\mathbb{F}_{1}^{1} = \{\{a, a+1\} : a \in \mathbb{Z}\}$. Let $f \subseteq \mathbb{Z}^{2}$. For n = 0, 1, 2, if f is a cartesian product of n elements of \mathbb{F}_1^1 and 2 - n elements of \mathbb{F}_{0}^{1} , we say that f is a an n-face or simply a face of \mathbb{Z}^{2} , n is the dimension of f, and we write dim(f) = n. The space of cubical complexes \mathbb{F}^2 is the set composed of all faces of \mathbb{Z}^2 . We denote by \mathbb{F}_k^2 $(0 \le k \le 2)$ the set composed of all k-faces of \mathbb{Z}^2 . Clearly that $\mathbb{F}_k^2 \subseteq \mathbb{F}^2$. The couple $(\mathbb{F}^2, \subseteq)$ is a poset.

Thus there is a corresponding T_{o} -Alexandroff space $(\mathbb{F}^{2}, \tau_{\subseteq})$. Indeed this topology is called the *cellular-complex topology* for the digital plane introduced by Alexandroff and Hopf (1935). Let $F \subseteq \mathbb{F}^{2}$ be a set of faces, and let $f \in F$ be a face. Then the face f is a *facet* of F if f is a maximal in F. Actually, if $x = (x_{1}, x_{2}) \in \mathbb{Z}^{2}$, the set $\dot{x} = \prod_{i=1}^{2} \{x_{i}, x_{i} + 1\}$ is a facet of \mathbb{F}^{2} and x is called the *leader* of \dot{x} and we write $L(\dot{x}) = x$ in Mazo (2012). Let $\mathbb{F}^{2}_{\{0,2\}} = \mathbb{F}^{2}_{0} \cup \mathbb{F}^{2}_{2}$.

Definition 5.1. The Marcus-Wyse function $\kappa : \mathbb{F}^2_{\{0,2\}} \longrightarrow \mathbb{Z}^2$ is a bijection function define as :

$$\kappa(f) = \left\{ egin{array}{ll} (a+b,a-b), & \mbox{if } dim(f) = 0 \ \mbox{and} \ f = \{(a,b)\}; \ (a+b+1,a-b), & \mbox{if } dim(f) = 2 \ \mbox{and} \ L(f) = (a,b). \end{array}
ight.$$

Definition 5.2. The 2-Alexandroff Hopf function $\psi_2 : \mathbb{F}^2 \longrightarrow \mathbb{Z}^2$ is a bijection function define as:

$$\psi_2(f) = \begin{cases} (2a,2b), & \text{if } dim(f) = 0 \text{ and } f = \{(a,b)\};\\ (2a+1,2b), & \text{if } dim(f) = 1 \text{ and } f = \{a,a+1\} \times \{b\};\\ (2a,2b+1), & \text{if } dim(f) = 1 \text{ and } f = \{a\} \times \{b,b+1\};\\ (2a+1,2b+1), & \text{if } dim(f) = 2 \text{ and } f = \{a,a+1\} \times \{b,b+1\}. \end{cases}$$

Using the 2-Alexandroff Hopf function and Theorem 1.2, we have the two following theorems :

Theorem 5.3. The Hopf topology (\mathbb{Z}^2, τ_s) is homeomorphic to the cellularcomplex topology (\mathbb{F}^2, τ_c) .

Theorem 5.4. Let (\mathbb{Z}^2, τ_m) be the Marcus-Wyse topology on \mathbb{Z}^2 , then (\mathbb{Z}^2, τ_m) is homeomorphic to $(\mathbb{F}^2_{\{0,2\}}, \tau_{\subseteq})$.

6. Conclusion

In this paper we proved there are two topologies on \mathbb{Z}^2 that are satisfying the two conditions 1^2 , 2^2 which are the Hopf and the Marcus-Wyse Topologies. We studied their properties. We hope this study will be a facilitating component of the study of Digital Topology and its applications through our findings about the minimal neighbourhoods of this topologies and represent them graphically.

References

- Alexandroff, P. and Hopf, H. (1935). Topologie. Verlag von Julius Springer, Berlin.
- Arenas, F., Dontchev, J., and Puertas, M. (2000). Unification approach to the separation axioms between t0 and completely hausdorff. Acta Math. Hungar., 86:75–82.
- Arenas, F. G., Dontchev, J., and Ganster, M. (1997). On λ-sets and the dual of generalized continuity. Questions and Answer in General Topology, 15(1):3–13.
- Crossley, S. G. and Hildebrand, S. K. (1971). Semi-closure. *Texas J. Sci.*, 22:99–112.
- Cueva, M. C. and Saraf, R. K. (2000). A research on characterizations of semi-t¹/₂-paces. *Divulgaciones Matematicas*, 8(1):43–50.
- Dontchev, J. (1998a). Survey on preopen sets. The Proceedings of the 1998 Yatsushiro Topological conference, pages 1–18.
- Dontchev, J. (1998b). $t_{\frac{3}{4}}$ -spaces and digital line. Proceedings of the Second Galway Topology Colloquium at Oxford, pages 1–29.
- Dunham, W. (1977). $t_{\frac{1}{2}}\text{-spaces.}$ Kyungpook Math. J., 17(2):161–169.
- Eckhardt, U. and Latecki, L. J. (2003). Topologies for the digital spaces \mathbb{Z}^2 and \mathbb{Z}^3 . Computer Vision and Image Understanding, 90:295–312.
- El-Deep, N., Hasanein, I. A., Mashhour, A. S., and T., N. (1983). On p-regular spaces. Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27(75):311–315.
- Ganster, M., Reilly, I. L., and Vamanamurthy, M. K. (1992). Remarks on locally closed sets. *Math. Panon.*, 3(2):107–113.
- Jankovic, . D. S. and Reilly, I. L. (1985). On semiseparation properties. Indian J. Pure Appl. Math., 16(9):957–964.
- Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces. Amer.Math. Monthly, 70:36–41.
- Mahdi, H. and EL-Mabhouh, A. (2011). Between scott and alexandroff spaces. J. of Islamic Univ., 19(1):47–56.
- Mahdi, H. B. (2010). Product of alexandroff spaces. Int. J. Contemp. Math. Sciences, 41(5):2037–2047.

Malaysian Journal of Mathematical Sciences

- Mahdi, H. B. (2015). Connectedness and mixed connectedness on t_o-alexandroff spaces. Int. Elect. J. of Pure and Applied Math., 9(2):55–65.
- Mahdi, H. B. and Elatrash, M. S. (2005). On t_o-alexandroff spaces. J. of Islamic Univ., 13(2):19–46.
- Mahdi, H. B. and Elatrash, M. S. (2006). Characterization of lower separation axiom in t₀-alexandroff space. Zarqa Private University, Jordan, First Conference on Mathematical Sciences, pages 77–89.
- Mahdi, H. B. and Hegazy, K. J. (2016). Properties of digital spaces on Z². Journal of Advanced Studies in Topology, 7(1):45–53.
- Maheshwari, S. N. and Prasad, R. (1975). Some new separation axioms. Ann. Soc. Sci. Bruxelles, 89:395–402.
- Maki, H., Devi, R., and Balachandran, K. (1993). Generalized α-closed sets in topology. Bull. Fukuoka Univ. Ed., 42(3):13–21.
- Marcus, D. and Wyse, F. (1970). A special topology for the integers (problem 5712). Amer. Math. Monthly, 77(85):11–19.
- Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N. (1982). On precontinuous and weak precontinuous mappings. *Proc. Math. Phys. Soc. Egypt*, 53:47–53.
- Mazo, L. (2012). Digital imaging: a unified topological framework. J. of Mathematical Imaging and Vision, 44(1):19–37.
- Melin, E. (2003). Connectedness and continuity in digital spaces with the khalimsky topology. Uppsala University, Department of Mathematics.
- Njastad, O. (1965). On some classes of nearly open sets. *Paci c J. Math.*, 15:961–970.
- Reilly, I. L. and Vamanamurthy, M. K. (1990). On some questions concerning preopen sets. *Kyungpook Math. J.*, 30:87–93.
- Van Mill, J. and Mills, C. F. (1980). A boojum and other snarks. Nederl. Acad. Wetensch. Proc. Ser. A, 83:419–424.